

Cylindrical Energy Analyzer for Heavy Ion Beam Diagnostics for measurements in tokamaks and stellarators

Presented by Ridhima Sharma

ERASMUS MUNDUS

Heavy ion beam probe (HIBP): ISTTOK

Tokamak ISTTOK : R = 0.46 m, a = 0.085 m $B = 0.5 \text{ T}, I_p = 4.6 \text{ kA},$ $< n_e > = 5 \times 10^{18} \text{ m}^{-3}, T_e = 120 \text{ eV}$

Experimental arrangement

90º Conventional cylindrical electrostatic analyser (CEA)

Normal mode operation

Noval retardation mode operation : 90º CEA

Noval retardation mode operation : 90º CEA

Normal mode

3D design in SIMION

Housing chamber

Guard rings

Optimised CEA:

4 channels with energy 19.7 ,20, 20.3keV

Electrode	Voltage(kV)
Analyser outer/inner	8.69/7.66
End MCAD	8.175
GR_inner:1 GR_outer:2	7.95 8.46

End MCAD

	Beam energy (keV)	V/mm	$\Delta E/E$ (experiment)	∆E/E (SIMION)	Mesh voltage (kV)	Beam deccelration
90° CEA ($\overline{R} = 21.5cm$)	Cs ²⁺ 20	24	-	1E-3	8	5
Tested CEA	2.2	15	8.8 E-3	6.3 E-3	1.4	2.75
(electron)	3	25.7	8.5 E-3	6.5E-3	2.4	5
(R = 10.5 cm)	2.7	29.5	1E-2	7.4E-3	1.1	1.7

SIMION simulation

Experimental

Stage 1: Electrostatic input unit

Beam deflection and collimation system

EIM prototype & Experimental setup

Fusenet PhD event 2018, cadarache, France

4 pairs Cylindrical

plates

4 pairs Parallel

plates

plate

Metallic frame

for wires

····> End MCAD

Insulator rod

Experimental data from EIM

Time (ms)

EIM Optimistion of channel 2				
Electrode	Voltage(V)			
Cylindrical plates	1700/-1700			
Parallel plate	660/0			
Einzel strip plate	433			

2D poloidal profiles of plasma potential and density

Plasma volume scanned in TJ-II

2D contour plots

Effect of positive and negative density gradient on

Summary

Simulation/design

Experimental

Electrostatic Input module

Electrostatic analyser

2D poloidal contour for TJII plamsa fluctuation

